爱尔兰,都柏林,都柏林大学罗巴克城堡学生宿舍/Kavanagh Tuite Architects

建筑师:Kavanagh Tuite Architects

地点:爱尔兰都柏林,都柏林大学贝尔菲尔德校区

项目经理:KSN Project Managers, Dublin

客户:UCD Property Services

工程师:Hanley Pepper Consulting Civil & Structural Engineers, Dublin.M&E

顾问:Delap& Waller Consulting Engineers, Dublin.

估价师:Kane Crowe Kavanagh, Dublin

项目年份:2010

摄影: Paul Tierney, Kavanagh Tuite

都柏林大学贝尔菲尔德校区位于都柏林东南部,日间人口包括20000名学生和5000名教职员工。目前,校园内的学生宿舍能够容纳大约2500名学生居住,校方希望在未来的几年里能够将宿舍容纳学生的数量提升至5000人。建筑师将学生宿舍明确归类为“学生村”,该项目是正在开发的罗巴克村的一部分,并且环绕在罗巴克城堡周围,这座城堡是一栋历史建筑,其渊源可以追溯到1200年,在19世纪曾经历了大规模的重修过程。

这栋建筑属于罗巴克村开发项目的二期工程,一期工程是Kavanagh Tuite Architects建筑事务所于2006年建成的罗巴克大厅。罗巴克城堡学生宿舍的设计始于2008年,以UCD(都柏林大学)的发展概要为基础,人们决定通过这栋宿舍楼来提升酒吧的活力,并希望将其打造成一个高标准的绿色项目。因此,建筑师们采纳了被动式住宅的方案,将其作为参考标准,该项目通过了被动式住宅认证,同时也获得了爱尔兰皇家建筑师学会2011年度“最佳可持续项目奖”。

项目

该项目的标准楼层平面图呈现出“宿舍大厅”式风格,容纳了套间学生房间和小厨房,中央走廊的两侧为起居室和学习室,中央电梯和楼梯间的两侧也安排了两间“公寓”。

简洁的户型基本平面布局互相错开,连接在中央核心区域四周,主入口和自助餐厅位于一层,面对着贯穿整栋建筑的通道,将罗巴克学生村的昔日风情和未来规划紧密地连在一起。第二逃生楼梯醒目地位于整栋建筑每层的末端部分,再次表达出简单紧凑的建筑形式。屋顶的机房空间容纳了建筑中央机械设备(热回收通风系统、储水箱和其他机械设备),位于绝缘建筑体量的外部,但是建筑师将其呈现为中央电梯和楼梯间的纵向延伸部分。

这栋建筑由矿渣微粉混凝土横墙、楼梯核心和楼层结构组成,所有的学生房间都使用了轻量级组合金属框架外墙面板。组合面板形成了一个密封的立面(在平板边缘采用点式固定,这样可以尽量减少冷桥的形成),同时与三个楼梯核心体量的木框幕墙立面一起提供了大型密封元件,这样一来,利用EPDM薄膜就能轻易保证混凝土基础结构拥有良好的气密性。这种策略在很大程度上可以规避设计完成后项目中气密性差的问题。

建筑师将学生房间打造成被动式住宅,里面配有经过认证的三层玻璃窗(U值为0.8 W/㎡K)。玻璃窗是开启式的,但是含有联锁控制,当窗子打开时房间内部的供热电路就会关闭。

走廊和楼梯核心并没有加热系统,而是安装了高性能的木框双层玻璃幕墙(U值为1.2 W/㎡K)。

所有的混凝土墙面外部都采用130毫米铝箔面压胶的PIR板进行隔热,并在Eurofoxrainscreen 支撑系统上覆盖了TrespaMeteon板。所有的轻型组合板材也使用了相同的覆层系统,呈现出统一的外观。覆层带有少许泥土色彩,这与相邻的建筑物和自然文脉紧密相关,也使建筑物的设计更人性化。

该项目广泛应用了可再生材料或是可以循环使用的材料,例如醋酸改性木材(固雅木)、可循环使用的sorghumstrand板材(Kirei板)、水性涂料、油毡地板饰面(Marmoleum)和GGBS(粒化高炉矿渣粉)水泥基层混凝土。

两个中央屋顶回转式热交换器空气处理机组作为热回收通风系统;供暖由邻近的罗巴克大厅冷凝式燃气锅炉的闲置产能提供,为学生房间内的迷你式暖气装置提供能量。

生活用热水(建筑物内最大的热负荷)一部分(33%)是由屋顶的回流式平板太阳能热水系统提供的,它包括当地20%的可再生能源装备。雨水可以从建筑物的屋顶进行回收,用于卫生间的冲洗。

竣工后

于我们而言,竣工后建筑的试运行和居住者对其的评价,对于监测实际系统的运转情况和舒适性能来说是非常必要的,我们可以对实际结果进行研究学习,不断提升我们的能力和专业知识。

本着这些原则,由SEAI(爱尔兰可持续能源署)资助的都柏林大学能源研究组已经开始着手启动一项为期两年的项目,对建筑物进行监测并评估其使用后的结果。屋顶的气象站提供了全面的气候数据,监测设备安装在这栋建筑的16间学生宿舍中,这可以提供室内温度、湿度和二氧化碳水平、电力使用情况和照明负载等各种数据。它也能记录下空间供暖和生活用热水需要的全部能源,以及MHRV和太阳能集热器产生的热量。都柏林大学建筑环境实验室将分析这些数据,告知人们每个系统的实际节能情况,为爱尔兰被动式建筑标准的应用提供深入研究的数据,确保学生可以生活在舒适健康的环境中。

结论

目前,监管法规在不断变化,能源运行成本上升,这些都大大推动着建筑设计标准朝着更好更环保的方向发展。改善建筑材料、建筑构件和建筑体系,将不断发展的专业知识与专业技能相结合,能为技术娴熟的设计师提供巨大的机遇,从而设计出更好的建筑物,呈现出更完美的建筑设计:拥有先进的环保性能和效率,具备多功能用途,而且细节设计完美无瑕,外表美观。

该项目表明,优秀的建筑设计能够与高性能的建筑结构同时实现。然而,从概念设计阶段到“设计中的”热性能问题,再到“设计完成后的”冷桥和气密性问题,都是非常有必要关注的。在成功的道路上,机遇和挑战并存,没有任何捷径可言。


Architects: Kavanagh Tuite Architects

Location: UCD Belfield Campus, Dublin, Ireland

Project Managers: KSN Project Managers, Dublin

Client: UCD Property Services

Engineers: Hanley Pepper Consulting Civil & Structural Engineers, Dublin.M&E

Consultants: Delap& Waller Consulting Engineers, Dublin.

Quantity Surveyors: Kane Crowe Kavanagh, Dublin

Project Year: 2010

Photographs: Paul Tierney, Kavanagh TuiteThe UCD Belfield Campus in south-east Dublin has a daytime population of about 20,000 students and 5,000 staff. At present there are on-campus student residences for approximately 2,500 students, and it is intended to increase this to 5,000 over the coming years. The residences are grouped into defined ‘student villages’, and this project is part of the developing Roebuck Village, centred on Roebuck Castle, an historic structure dating back to c. 1200, though largely rebuilt in the 19th Century.This building is the second stage of Roebuck Village, the first stage being Roebuck Hall, completed by Kavanagh Tuite Architects in 2006. When design started on Roebuck Castle residence in 2008, in establishing the brief with UCD it was decided to raise the bar, and aim for an exemplary ‘green’ project. Passive House was subsequently adopted as the reference standard, and the project has attained Passive House Certification, as well as receiving the RIAI (Royal Institute of Architects of Ireland) 2011 Award for the “Best Sustainable Project of the Year”.The project

The typical floor plan, for “hall of residence” style accommodation, contains en-suite student rooms and kitchenette, living and study rooms on either side of a spine corridor, arranged in two ‘apartments’ on either side of a central lift and stair core.This basic simple plan form is off-set and articulated around the central core, where at ground level the main entrance and cafeteria face onto a walkway through the building, providing a link with previous and future stages of the Roebuck student village. Secondary escape stairs at each end of the building are expressed, again articulating the simple compact building form. The roof-top plant room housing, containing the central plant (heat recovery ventilation, water storage tanks and other plant) is external to the insulated building volume, but is expressed as a vertical extension of the central lift and stair core.The building is of GGBS concrete cross-wall, stair core and floor structure, with lightweight unitised metal framed external wall panels to all the student rooms. The unitised panels create an airtight façade (point fixed to the slab edges for minimum cold bridging), and together with wood-framed curtain wall façades to the three stair core volumes, provide large sealed elements that are then easily air-sealed to the basic concrete structure with EPDM membranes. This strategy largely ‘designed-out’ problems of air sealing the project.The student rooms have passive house certified triple-glazed windows (U-value 0.8 W/m2K). They are openable, but have an interlock control, closing the local room heating circuit when the window is opened.The corridors and stair cores are not heated, and are glazed with wood-framed, high-performance double-glazed curtain walls (U-value 1.2 W/m2K).All concrete walls are insulated externally with 130mm foil-faced and taped PIR boards, and clad with the TrespaMeteon boards on Eurofoxrainscreen support system. This same cladding system runs over all the unitised light-weight wall panels, giving a uniform external appearance to all. The cladding has a limited number of earthy colours, relating to adjacent buildings and the natural context, helping to give the building an understandable and human scale.The project makes extensive use of renewable or recycled materials, such as acetic-acid modified timber (Accoya), recycled sorghumstrand board (Kirei Board), water-based paints, linoleum floor finishes (Marmoleum), and GGBS (ground granulated blast furnace slag) cement based concrete.Heat recovery ventilation is provided through two central roof top heat-wheel air handling units, and heating is provided from spare capacity in the adjacent Roebuck Hall condensing gas boilers, supplying mini-radiators in the student rooms.Domestic hot water (the largest heat load in the building), is partially (33%) supplied by a drain-back flat-plate solar water heating system on the roof, coveringa local20% renewable energy requirement. Rainwater is harvested from the building roofs, and used for toilet flushing.Post-Completion

Post-completion commissioning and occupants’ reviews, monitoring of actual systems and comfort performance are essential for us to study and learn from the actual results, and to develop our skills and expertise going forward.In line with this, UCD Energy Research Group, funded by SEAI (Sustainable Energy Authority of Ireland), has commenced a two year programme of monitoring and post occupancy evaluation of the building. A roof-top weather station provides full climatic data,andmonitoring equipment, installed in 16 student rooms in the building, provides data on indoor temperature, humidity and CO2levels, electrical use and lighting loads. It also records overall energy required for space heating and domestic hot water; heat flows from MHRV and solar collectors. The data will be analysed by UCDBuilding Environmental Lab to inform on actual savings from individual systems, provide data for further research in the application of the Passivhaus Standard in Ireland, and ensure that the students are residing in a comfortable and healthy environment.Conclusions

We have reached a stage where both regulatory changes and rising operational energy costs are giving a major ‘push’ towards better, “greener” building design standards. Improved building materials, elements and systems, and developing professional knowledge and expertise combine to give a huge opportunity for skilled designers to create better buildings, better architecture: advanced environmental performance and efficiency, functional, well detailed, and good looking solutions.This project demonstrates that fine architectural design can be achieved together with exemplary high-performance building construction. It is necessary however, from the conceptual design stage, to ‘design-in’ thermal performance, and to ‘design-out’ thermal bridging and air-tightness problems. This is both a challenge and an opportunity, with no more shortcuts (any more…) to success!